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ABSTRACT 

Graph colouring is general. Positive integer graph and finite set T. A graph a-coloring assigns 

a colour to each element in T so that two elements connected by an edge have different colours. For 

more colour options, "Strong-coloring" (S-coloring) is used. We have a graph with finite positive 

numbers. An S-coloring of the graph assigns a colour to each element in the set, thus elements 

connected by edges are assigned distinct colours, and any two edges are assigned different colours. S-

chromatic number is the minimum number of colours needed to S-color a graph. The "S-span" is the 

biggest graph colouring value after inspecting all vertex pairs. For all graph colorings, "ST-coloring c 

of G" returns the lowest "S-span" value. An "edge span" is the greatest value of all edges in a graph G, 

while a "S-edge span" is the lowest value from all ST-colorings of G. 𝑇-coloring is a generalised 

colouring of a graph 𝐺 = (𝑉, 𝐸). The graph 𝐺 = (𝑉, 𝐸) and a finite set of positive numbers, including 

0, are shown. The 𝑇-coloring of 𝐺 is a function 𝑓 : 𝑉 (𝐺) → 𝑍+ 𝖴 {0}, where if 𝑢w is an edge in 𝐸(𝐺), 

the absolute difference between 𝑓(𝑢) and 𝑓(w) is not The term "Strong 𝑇-coloring" encompasses more 

than just that. S-coloring of a graph 𝐺 = (𝑉, 𝐸) is a function 𝑓 : 𝑉 (𝐺) → 𝑍+ 𝖴 {0}. If 𝑢w ∈ 𝐸(𝐺), then 

|𝑓(𝑢) − 𝑓(𝑤)| S𝑇-coloring requires a minimum of 3 colours, which is 𝐺's S𝑇-Chromatic number. The 

ST-span of a graph G is the largest colour difference between any two vertices using ST colouring c. 

G has the lowest spc(G) of all ST colorings c. The largest absolute difference between 𝑐(𝑢) and 𝑐(𝑣) 

values for all edges in 𝐺 is the 𝑐𝑆𝑇-edgespan 𝑒𝑠𝑝𝑐 (𝐺  The minimum S-edge span 𝑒𝑠𝑝𝑆𝑇(𝐺) is 

determined by considering all possible ST-colorings. 

Keywords: 𝑇-coloring, S𝑇-coloring, span, edge span.  

 

INTRODUCTION 

The graphs analysed in this study are finite, simple, and undirected. For definitions not 

addressed in this work, one can consult. In 𝑇-coloring, the vertices represent transmitters, and an edge 

exists between two transmitters if they interfere with each other. In that particular model, a single fixed 

value of T is used to account for all the interference. A 𝑇-coloring of a graph 𝐺 = (𝑉, 𝐸) is an extension 

of graph colouring. Consider a set 𝑇 that is strictly less than the union of sets 𝑍 and 𝖴, excluding the 

element 0. This set 𝑇 is assumed to be fixed. A graph 𝐺 is said to have a 𝑇-coloring if there exists a 

function ƒ : 𝑉(𝐺) → 𝑍+ 𝖴 {0}, such that for every edge 𝑢𝑤 ∈ 𝐸(𝐺), the absolute difference between 

ƒ(𝑢) and ƒ(𝑤) is not an element of 𝑇. To obtain additional results on 𝑇-coloring, one may refer to the 

poll on 𝑇-coloring as mentioned in. A 𝑇-coloring of a graph provides a useful representation for 

illustrating the interference that occurs between transmitters.  Assume that this fixed set 𝑇 can change 

for each interfering transmitter. Under these circumstances, it is possible to represent the scenario using 

a novel concept called strong 𝑇-coloring of G, which serves as an extension of 𝑇-coloring for a graph. 

Consider a graph G and a finite set T consisting of non-negative integers. An ST-coloring of graph G 

is a function f: V(G) → Z+ ∪ {0} such that for any u, w in V(G) [1-11].  

(i) uw ∈ E(G) then |f(u)  − f(w)| Ø T and 

(ii) |f(u) − f(w)| G |f(x) − f(y)| for any two distinct edges uw, xy in E(G). 
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The ST-Chromatic number of G is the minimum number of colors needed for a ST coloring of 

G and it is denoted χST (G) .  

The following observation is immediate. 

Observation 1: (i) 3𝑆𝑇 (𝐺) ≥ 3(𝐺) = 3𝑇 

Theorem 2.1. If (𝐺)    

𝐺 is a simple connected graph then there exists a S𝑇-coloring. 

Proof.: Let 𝐺 be a graph with 𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and let 𝑇 be the set of positive integers 

containing 0 with 𝑘 as its largest element. Define S𝑇 -coloring of 𝐺 as follows. 

𝑐(𝑣i) = (𝑘 + 2)𝑛+i for 1  ≤  i  ≤  𝑛 

Now we need to prove that 

|ƒ(𝑣i) − ƒ(𝑣j)| G |ƒ(𝑣𝑙) − ƒ(𝑣𝑚)| (1) 

where 𝑣i 𝑣j, 𝑣𝑙 𝑣𝑚 ∈ 𝐸(𝐺). 

If 𝑣i 𝑣j and 𝑣𝑙 𝑣𝑚 are adjacent then clearly equation (1) holds. Hence, assume 𝑣i 𝑣j and 𝑣𝑙𝑣𝑚 be two 

non adjacent edges. Therefore i, j, 𝑙, 𝑚are distinct positive integers. W.l.g assume that i is the largest 

integer and 𝑚 is the least integer. Then either 𝑚 ≤ j ≤ 𝑙 ≤ i or 𝑚 ≤ 𝑙 ≤ j ≤ i. 

Case(i) : 𝑚 ≤ j  ≤  𝑙  ≤  i. 

Suppose (1) is not true. Then we have, 

|ƒ(𝑣i) − ƒ(𝑣j)| =  |ƒ(𝑣𝑙) −  ƒ(𝑣𝑚)| 

(𝑘 + 2)𝑛+i − (𝑘 + 2)𝑛+j = (𝑘 + 2)𝑛+𝑙 − (𝑘 + 2)𝑛+𝑚 (𝑘 + 2)i − (𝑘 + 2)j = (𝑘 + 2)𝑙 − (𝑘 + 2)𝑚 

(𝑘 + 2)i−𝑚 − (𝑘 + 2)j−𝑚 =  (𝑘 + 2)𝑙−𝑚 – 1 

(𝑘 + 2)i−𝑚 + 1  =  (𝑘 + 2)𝑙−𝑚 + (𝑘 + 2)j−𝑚 (2) Therefore (𝑘 + 2)i−𝑚 and (𝑘 + 2)𝑙−𝑚 + (𝑘 + 2)j−𝑚are 

consecutive integers, where i − 𝑚 > 𝑙 − 𝑚 > j − 

𝑚 > 2. 

Let 𝑘 + 2 = 𝑎, i − 𝑚 = 𝑥, 𝑙 − 𝑚 = 𝑦, j − 𝑚 = 𝑧. 

𝑎𝑦 + 𝑎𝑧  −  𝑎𝑥  ≤  𝑎𝑥−1  +  𝑎𝑥−2  −  𝑎𝑥 

≤ 𝑎𝑥−2(𝑎 + 1 − 𝑎2) ≤ 0 

Which in turn  implies  that  (𝑘 + 2)𝑙−𝑚 + (𝑘 + 2)j−𝑚 − (𝑘 + 2)i−𝑚 is negative, a contradiction to (2). 

Similar is the case when 𝑚 ≤ 𝑙 ≤ j ≤ i. 

Theorem 2.2. Let 𝑇 be any set. If 𝐻 is the subgraph of a graph 𝐺 then 3𝑆𝑇 (𝐻) ≤ 3𝑆𝑇 (𝐺). 

We prove that the strong chromatic index for each k-degenerate graph with maximum degree ∆ is at 

most (4k − 2)∆ − k(2k − 1) + 1. A strong edge-coloring of a graph G is an edge-coloring so that no 

edge can be adjacent to two edges with the same color. So in a strong edge-coloring, every color class 

gives an induced matching.  

 
Figure 1: Strong Edge Coloring 
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The strong chromatic index χ′ (G) represents the smallest possible number of colours required 

to strongly colour the edges of graph G. Fouquet and Jolivet introduced this concept. Erd˝os and 

Neˇsetˇril presented several open questions during a seminar in Prague in 1985. One of these 

difficulties is referred to as Conjecture 1 (Erd˝os and Neˇsetˇril, 1985). If G is a simple graph with a 

maximum degree ∆, then the chromatic index χ′ (G) is at most 5∆2/4 if ∆ is even, and at most (5∆2 − 

2∆ + 1)/4 if ∆ is odd. This conjecture holds true for triangles with a maximum of three sides. Cranston 

demonstrated that the chromatic index of graph G, denoted as χ′ (G), is at most 22 when the maximum 

degree of G, denoted as ∆, is equal to 4. Chung, Gy´arf´as, Trotter, and Tuza demonstrated that the top 

limits correspond precisely to the number of edges in graphs that do not contain a subgraph isomorphic 

to 2K2. Molloy and Reed demonstrated that graphs with a sufficiently big maximum degree ∆ have a 

strong chromatic index that is at most 1.998∆2. A graph is considered k-degenerate if the lowest degree 

of every subgraph is no greater than k. In a recent study, Chang and Narayanan (2012) demonstrated 

that a graph with a maximum degree of ∆ and a 2-degenerate property has a strong chromatic index 

that is at most 10∆ − 10. Luo and the author enhanced the maximum limit to 8∆ − 4.  

The following conjecture, known as Conjecture 2 (Chang and Narayanan), was proposed. 

There is a fixed constant, denoted as c, such that for any k-degenerate graphs G with a maximum 

degree ∆, the chromatic index χ′ (G) is less than or equal to ck2∆. Additionally, the k2 can be 

substituted with k. This study presents a more robust version of the conjecture, which we demonstrate. 

In contrast to the priming methods, we discover a distinct arrangement of the edges and achieve the 

subsequent outcome by employing a greedy colouring technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: T-Coloring of Certain Networks 

Theorem 1: The strong chromatic index of a k-degenerate graph with maximum degree ∆ is at 

most (4k − 2)∆ − k(2k − 1) + 1. Therefore, graphs that are 2-degenerate have a high chromatic index 

that is at most 6∆ − 5. Evidence. According to the definition of k-degenerate graphs, when we remove 

all vertices with a degree of k or less, the resulting graph either has no edges or has new vertices with 

a degree of k or less. This simple fact about k-degenerate graphs may also be found in reference [2]. 

Consider a graph G that is k-degenerate. There is a vertex u in the graph G such that u is connected to 

at most k vertices with a degree greater than k. Furthermore, if the graph G has a degree sum greater 

than k, then it is possible to select a vertex u with a degree exceeding k [12-16]. 

A vertex u is classified as a special vertex if it is connected to no more than k vertices with a 

degree greater than k. A special edge is defined as an edge that is connected to both a special vertex 

and a vertex with a degree of at most k. Consequently, it can be inferred that every k-degenerate graph 

possesses a distinct edge, and if the maximum degree (∆) is less than or equal to k, then each vertex 

and edge are unique. The ordering of the edges of G is as follows. Initially, we identify a distinctive 

edge in G, place it at the start of the list, and subsequently eliminate it from G. Reiterate the 

aforementioned step in the remaining graph. Upon completion of the process, we obtain a sequentially 
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arranged collection of the edges in G, denoted as e1, e2, . . . , em, where m equals the cardinality of 

E(G). Em is the unique edge that we initially selected and added to the list. 

Consider the graph Gi, which is formed from the first i edges in the list, where i ranges from 1 

to m. Therefore, ei is an exceptional edge in Gi. We are currently enumerating the edges of graph Gi 

that are within a distance of one from vertex ei in graph G. The edges in Gi can be referred to as blue 

edges, while the edges in G − Gi can be referred to as yellow edges. Consider the endpoints of edge ei 

as ui and vi, where ui is a designated vertex in graph Gi. Initially, we tally the number of blue edges 

that are connected to the vertex ui and its adjacent vertices. The vertex ui has three types of neighbours: 

the neighbours in X1 who share blue edges with ui and have a degree greater than k, the neighbours in 

X2 who share blue edges with ui and have a degree of at most k (therefore vi ∈ X2), and the neighbours 

in X3 who share yellow edges with ui. According to the definition, the absolute value of X1 is less 

than or equal to k. Therefore, there may be at most |X1|∆ + k(|X2| − 1) blue edges that are connected 

to X1 ∪ (X2 − {vi}). For every vertex u in X3, the edge uui is coloured yellow in Gi, but it will become 

a unique edge in Gj for some j that is greater than i. Either u or ui has a degree of at most k in Gj (and 

hence also in Gi). If ui has a degree of at least k in Gm for some m, then all yellow edges connected to 

ui in Gm must have a degree of at most k - 1 in Gm, in order for the yellow edges to be considered 

exceptional later. Among the vertices in X3, the maximum number of vertices (x) that can have a 

degree greater than k in Gi is given by the formula x = max{0, k − |X1| − |X2|}. All other vertices in 

X3 have a degree at most k − 1 in Gi. Hence, the maximum number of blue edges incident to X3 is 

x∆+(|X3|− x)(k − 1). Given the conditions that d(ui) is less than or equal to ∆, |X2| is less than or equal 

to ∆, and |X1| + x is less than or equal to k, we may conclude that the maximum number of blue edges 

within distance one to ei from the ui side (excluding the edges incident to vi) is (|X1|+x)∆+(k − 

1)(d(ui)−|X1|− x− 1) +|X2|− 1, which is also less than or equal to 2k∆− k2. 

In addition, we tally the number of blue edges that are connected to vertex vi and its adjacent 

vertices. Similarly, each vertex vi has two types of neighbours: the neighbours in Y1 that share blue 

edges with vi, and the neighbours in Y2 that share yellow edges with vi. Given that ei is a unique edge, 

the cardinality of Y1, denoted as |Y1|, is less than or equal to k. Therefore, the maximum number of 

blue edges incident to Y1 - {ui} is (|Y1| - 1)∆. For every vertex v in Y2, vvi represents a yellow edge 

in Gi, but it will become a unique edge in Gs for some s greater than i. Similarly to the previous 

statement, in Gi, there can be at most k - |Y1| vertices in Y2 that have a degree greater than k. All other 

vertices in Y2 have a degree of at most k - 1 in Gi. The maximum number of blued edges occurring to 

Y2 is given by the expression (k − |Y1|)(∆ − 1) + (|Y2| − (k − |Y1|))(k − 1). 

The maximum value of the expression is (|Y1| − 1)∆ + (k − |Y1|)(∆ − 1) + (|Y2| − (k − |Y1|))(k 

− 1), which is less than or equal to (2k − 2).The expression ∆ − k(k − 1) represents the difference 

between the value of ∆ and the product of k and (k - 1). In Gi, the maximum number of blue edges at 

a distance of one from ei is 2k.The inequality ∆ − k2 + (2k − 2)∆ − k(k − 1) is less than or equal to (4k 

− 2)∆ − k(2k − 1). Proceed to colour each edge in the list individually using a greedy approach. For 

each i, when it is the time to colour ei, just the edges in Gi (the blue edges) have been coloured. Given 

that there are a minimum of (4k − 2)∆ − k(2k − 1) + 1 colours available, we can assign colours to the 

edges in such a way that edges within a distance of one have distinct colours. 

 

The ST-SPAN AND The ST-Edge Span 

Consider 𝑐 as a proper vertex colouring of 𝐺 using S𝑇 colours. If 𝑘 represents the highest colour 

assigned to a vertex of 𝐺 using the S𝑇-coloring 𝑐, then the colouring 𝑐̅ of 𝐺, defined as 𝑐(̅ 𝑣) = 𝑘 + 1 − 

𝑐(𝑣) for each vertex 𝑣 of 𝐺, is likewise a S𝑇-coloring of 𝐺. This colouring is referred to as the 

complementary colouring of 𝑐. 

Let's define the ST-coloring c of a graph G as a colouring scheme where each vertex is assigned 

a colour. The cST-span spc(G) is the largest difference in colour between any two vertices u and v in 

G. The ST-span spST(G) is the smallest value of spc(G) obtained by considering all possible ST-

colorings c of G. The cST-edgespan espc(G) represents the highest value of |c(u) − c(v)| among all 
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edges uv in G. On the other hand, the ST-edge span espST(G) is defined as the smallest value of 

espc(G) when considering all possible ST-colorings of G. 

Every graph 𝐺 has an ST-coloring in which one vertex is assigned the colour 0. If 𝑐′ is an ST-

coloring of a graph 𝐺, where 𝑡 ≥ 1 is the smallest colour assigned to any vertex of 𝐺, then the colouring 

𝑐 of 𝐺 defined by 𝑐(𝑣) = 𝑐(𝑣') − 𝑎 for each 𝑣 ∈ 𝑉 (𝐺) is also an ST-coloring of 𝐺. In this new colouring, 

there is a vertex assigned the colour 0 by 𝑐, and the cST-span of 𝐺 is the same as the c′ST-span of 𝐺. 

Therefore, for a given finite collection of non-negative integers, spST(G) is defined as the minimum 

of the highest 𝑐(𝑣) value, where the maximum is calculated for all vertices 𝑣 in 𝐺, and the minimum is 

calculated for all ST-colorings of 𝐺. If spST(G) = 𝑙, then there exists an ST-coloring 𝑐 : 𝑉 (𝐺) → {0,1,2, 

. . . , 𝑙} of 𝐺, where at least one vertex is coloured 0 and at least one vertex is coloured 𝑙. For every 

graph 𝐺, it holds that 3𝑆𝑇 (𝐺) is less than or equal to spST(G) [17-19]. 

Theorem 3.1. For all graphs 𝐺, 

(i)spT(G) ≤ spST(G) , (ii)𝑒spT(G) ≤ espST(G) 

Proof: Let 𝑇 be any finite set of non negative integers containing 0. Every ST-coloring of 𝐺 is 

also a 𝑇-coloring of 𝐺. Hence, spT(G) ≤ spST(G), 𝑒spT(G) ≤ espST(G). Theorem 3.2. Let 𝐻 be a 

subgraph of a graph 𝐺. For each finite set 𝑇 of nonnegative integers containing 0, 

 

(i) spST(H) ≤ spST(G) (ii)espST(H) ≤ 𝑒spST(G) 

Proof is similar that of (i). 

 

Corollary 3.1. If 𝐺 is weakly 𝛾-perfect then spST(G) = espST(G) = spST(𝐾𝑘) 

In closing this paper, we mention some most important 

questions which remain. 

 

Conjecture: Let 𝑇 be a finite set of non negative integers 

containing 0. If 𝐺 is a graph with 3𝑆𝑇 (𝐺) = 𝑘 and 𝜔(𝐺) = 

𝑙, then spST(𝐾𝑙) ≤ 𝑒spST(G) ≤ spST(G) ≤ spST(𝐾𝑘). 

 

Open problems: 

(i) For certain families of graphs, determine 3𝑆𝑇 (𝐺) . 

(ii) For which graph , 3𝑆𝑇 (𝐺) = |𝑉(𝐺)| ? 

(iii) Find the values of spST(𝐾𝑛) and 𝑒spST(𝐾𝑛) when 𝑇 is a 

𝑘-initial set. 

(iv) For certain families of graphs, compute spST(G) and 

𝑒spST(G).  

 

CONCLUSION 

There are two types of graph colouring problems: T-coloring and Strong T-coloring. These 

graph colouring problems are generalisations of the channel assignment problems typically 

encountered in broadcast networks.During this presentation, we will discuss the concept of distance 

graphs as a tool for analysing the entire ST-coloring problem, and we will also investigate the 

complexity of this subject matter. Obtaining a deeper comprehension of the ST-coloring problem 

might be possible with the application of additional analysis to the structure of distance graphs. 
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